Numerical Ordinary Differential Equations - Boundary Value Problems

ثبت نشده
چکیده

Consider a second-order linear 2-point boundary value problem (BVP) −z + p(x)z + q(x)z = r(x) (10.1) z(a) = α (10.2) z(b) = β (10.3) where p(x), q(x) and r(x) are given. By defining y(x) := [z(x), z (x)] T , the problem can be changed into a first-order differential system y = 0 1 q(x) p(x) y + 0 −r(x) (10.4) y 1 (a) − α = 0 (10.5) y 2 (b) − β = 0. (10.6) Remark. In general, a linear 2-point BVP can be written as y = A(x)y + Φ(x) (10.7) g(y(a), y(b)) = 0 (10.8) where y, Φ and g are n-dimensional vectors and A(x) ∈ R n×n. Consider the following IVP associated with (10.4), u = 0 1 q(x) p(x) u + 0 −r(x) (10.9) u(a) = α s .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

Efficient Computation of Sensitivities for Ordinary Differential Equation Boundary Value Problems

For models described by ordinary differential equation boundary value problems (ODE BVPs), we derive adjoint equations for sensitivity analysis, giving explicit forms for the boundary conditions of the adjoint boundary value problem. The solutions of the adjoint equations are used to efficiently compute gradients of both integral-form and pointwise constraints. Existence and stability results a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007